Lattice Gaussian Sampling by Markov Chain Monte Carlo: Bounded Distance Decoding and Trapdoor Sampling
نویسندگان
چکیده
منابع مشابه
Lattice Gaussian Sampling by Markov Chain Monte Carlo: Convergence Rate and Decoding Complexity
Sampling from the lattice Gaussian distribution is an efficient way for solving the closest vector problem (CVP) in lattice decoding. In this paper, decoding by MCMC-based lattice Gaussian sampling is investigated in full details. First of all, the spectral gap of the transition matrix of the Markov chain induced by the independent Metropolis-Hastings-Klein (MHK) algorithm is derived, dictating...
متن کاملMarkov Chain Monte Carlo and Gibbs Sampling
A major limitation towards more widespread implementation of Bayesian approaches is that obtaining the posterior distribution often requires the integration of high-dimensional functions. This can be computationally very difficult, but several approaches short of direct integration have been proposed (reviewed by Smith 1991, Evans and Swartz 1995, Tanner 1996). We focus here on Markov Chain Mon...
متن کاملMarkov Chain Monte Carlo and Gibbs Sampling
A major limitation towards more widespread implementation of Bayesian approaches is that obtaining the posterior distribution often requires the integration of high-dimensional functions. This can be computationally very difficult, but several approaches short of direct integration have been proposed (reviewed by Smith 1991, Evans and Swartz 1995, Tanner 1996). We focus here on Markov Chain Mon...
متن کاملAdaptive Markov Chain Monte Carlo Sampling and Estimation in Mata
I describe algorithms for drawing from distributions using adaptive Markov chain Monte Carlo (MCMC) methods, introduce a Mata function for performing adaptive MCMC, amcmc(), and a suite of functions amcmc *() allowing an alternative implementation of adaptive MCMC. amcmc() and amcmc *() may be used in conjunction with models set up to work with Mata’s [M-5] moptimize( ) or [M-5] optimize( ), or...
متن کاملChapter 5: Dynamic Sampling and Markov Chain Monte Carlo
A variety of techniques collectively called Markov chain Monte Carlo (MCMC) or dynamic sampling allow sampling of complex high dimensional distributions not accessable by simple samplers. With technical ideas to follow, the rough idea is that if f is the invariant law of a nondegenerate Markov chain X(t), then the law of X(t) converges to f as t→∞. We choose a starting state X(0) in an arbitrar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2019
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2019.2901497